TOEPLITZ OPERATORS AND SQUARE-INTEGRABLE GAUSSIAN HOLOMORPHIC SECTIONS

Bingxiao Liu

joint work with Alexander Drewitz and George Marinescu arXiv:2302.08426 and arXiv:2404.15983

26th September 2024

Seminar Academy of Mathematics and Systems Science, CAS (Beijing)

UNIVERSITÄT ZU KÖLN

- **1** INTRODUCTION: RANDOM ZEROS IN GEOMETRIC QUANTIZATION
- (2) TOEPLITZ OPERATORS AND GAUSSIAN \mathcal{L}^2 -HOLOMORPHIC SECTIONS
- 3 DISCUSSIONS ON THE PROOFS AND BEYOND

OUTLINE

1 INTRODUCTION: RANDOM ZEROS IN GEOMETRIC QUANTIZATION

- Geometric quantization via K\u00e4hler manifolds
- Questions on random zeros
- Limiting distribution of random zeros on K\u00e4hler manifolds

2) Toeplitz operators and Gaussian \mathcal{L}^2 -holomorphic sections

- Berezin-Toeplitz quantization via K\u00e4hler manifolds
- Abstract Wiener space to define Gaussian L²-holomorphic sections
- Main results for the random zeros on the support of f

3 DISCUSSIONS ON THE PROOFS AND BEYOND

- About the proofs of Theorem 1 and 2
- What happens outside the support of f?
- Zeros of partial Gaussian holomorphic sections

KÄHLER MANIFOLD AND

- (X, ω) (connected) Kähler manifold of complex dimension *n*... without boundary.
- X locally is an open subset of Cⁿ, called a local chart, different local charts glued together by biholomorphic diffeomorphisms.
- ω K\u00e4hler form, a real differential 2-form on X ... in local coordinates (z₁,..., z_n) ∈ Cⁿ

$$\omega = \sqrt{-1} \sum_{i,j} g_{i,j}(z) dz_i \wedge d\bar{z}_j,$$

where $(g_{i,j}(z))_{i,j=1}^{n}$ is Hermitian, positive definite, depending smoothly on *z*.

- Kähler condition: dω = 0 on X ... a conservative system
 ...
- ... it defines volume form on X

$$\mathrm{dV} = \frac{\omega^n}{n!} = \frac{1}{n!} \underbrace{\omega \wedge \ldots \wedge \omega}_{n \text{ copies}}.$$

Photo of Erich Kähler by L. Reidemeister from Oberwolfach Photo Collection.

EXAMPLES OF KÄHLER MANIFOLD

• Ex 1: Riemann sphere $\mathbb{CP}^1 = \mathbb{C} \cup \{\infty\} \simeq \mathbb{S}^2$, gluing two copies $\mathbb{C}_1 \& \mathbb{C}_2$ of \mathbb{C} via the biholomorphic diffeomorphism

$$\mathbb{C}_1 \setminus \{0\} \ni z \mapsto \frac{1}{z} =: w \in \mathbb{C}_2 \setminus \{0\}.$$

Fubini-Study metric

$$\omega_{\rm FS} = \frac{\sqrt{-1}}{2\pi} \frac{dz \wedge d\bar{z}}{(1+|z|^2)^2} = \frac{\sqrt{-1}}{2\pi} \frac{dw \wedge d\bar{w}}{(1+|w|^2)^2}.$$

• Ex 2: complex vector space \mathbb{C}^n with the flat Kähler metric

$$\omega_{\mathrm{flat}} = rac{\sqrt{-1}}{2\pi} \sum_{j=1}^n dz_j \wedge dar z_j.$$

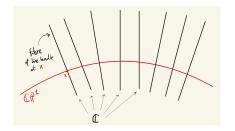
- Ex 3: Poincaré disc $\mathbb{D} = \{|z| < 1\}$
- hyperbolic metric

$$\omega_{\mathrm{Poinc}} = rac{\sqrt{-1}}{2\pi} rac{dz \wedge dar{z}}{(1-|z|^2)^2}.$$

BINGXIAO LIU (UZK)

..... AND HOLOMORPHIC LINE BUNDLE

- Holomorphic line bundle *L* on *X* is a holomorphic family of C parametrized by *x* ∈ *X* ... denote as *L* → *X*.
- ... such as the trivial line bundle $\underline{\mathbb{C}} := X \times \mathbb{C} \to X \dots$
- another example, for $v \in \mathbb{C}^2 \setminus \{0\}$, $[v] \in \mathbb{CP}^1$, line bundle $\mathscr{O}(1)_{[v]} := \mathbb{C}v^*$.
- Hermitian metric *h* on *L*: locally $|1|_{h}^{2} = e^{-\phi}$. Local potential ϕ is real function.



- First Chern form $c_1(L,h) \in \Omega^{(1,1)}(X,\mathbb{R})$ locally $= \frac{\sqrt{-1}}{2\pi} \frac{\partial^2 \phi}{\partial z_i \partial \bar{z}_j} dz_i \wedge d\bar{z}_j$.
- a global holomorphic section s of L on X is a holomorphic map s : X → L such that for every x ∈ X, s(x) ∈ L_x ≃ C.
- ... holomorphic section *s* is locally regarded as a holomorphic function.

HOLOMORPHIC SECTIONS

- $H^0(X, L)$ = space of (global) holomorphic sections of *L*.
- Ex 1: $H^0(X, \underline{\mathbb{C}})$ = global holomorphic functions on *X*.
- If X is compact (without boundary), the holomorphic functions are always constant, but one can have many nontrivial holomorphic sections ...
- Ex 2: for integer p, $\mathscr{O}(p) := \mathscr{O}(1)^{\otimes p}$ holomorphic line bundle on \mathbb{CP}^1 ,

 $H^0(\mathbb{CP}^1, \mathscr{O}(p)) = \{ \text{polynomials in } z \text{ of degree up to } p \}.$

• Square-integrable (or simply \mathcal{L}^2) inner product:

$$\langle s_1, s_2 \rangle_{\mathcal{L}^2} := \int_X h(s_1(x), s_2(x)) \mathrm{dV}(x).$$

Square-integrable holomorphic sections:

$$H^{0}_{(2)}(X,L) := H^{0}(X,L) \cap \mathcal{L}^{2}(X,L).$$

• ... it is a Hilbert space with the \mathcal{L}^2 -inner product.

GEOMETRIC QUANTIZATION IN KÄHLER GEOMETRY

- (X, ω) Kähler manifold, (L, h) Hermitian holomorphic line bundle ...
- Prequantum condition: $\omega = c_1(L, h)$.
- In this case, (L, h) is uniformly positive ... guaranteeing existence of many holomorphic sections ...
- Planck constant $\hbar \simeq 1/\rho$, $\rho \in \mathbb{N}$ corresponding to tensor power of *L*,

$$(L^{p},h_{p}):=(L^{\otimes p},h^{\otimes p}).$$

• Space of Quantum States of level p is the Hilbert space

$$\mathcal{H}_{\hbar} = H^0_{(2)}(X, L^{\rho}).$$

- $d_{\rho} := \dim_{\mathbb{C}} H^0_{(2)}(X, L^{\rho}) \in \mathbb{N} \cup \{+\infty\}.$
- If X compact, $d_p = \mathcal{O}(p^n)$.
- A fundamental principle states that quantum mechanics contains the classical one as the limiting case $\hbar \rightarrow 0$, represented by the Kähler form ω .
- Semi-classical limit: $p \to +\infty$.

THE GENERAL QUESTIONS ON RANDOM ZEROS

- ... aim to study the random quantum states and their related quantities under semi-classical limit ...
- More precisely ... we focus on ...
- Define the random holomorphic section S_p from/valued in each H⁰₍₂₎(X, L^p), such as defining some Gaussian ensembles {S_p}_p.
- ② Study the asymptotic behaviours of the zeros of S_p as $p \to +\infty$.

THREE BASIC EXAMPLES IN DIMENSION ONE, I

For $p = 1, 2, 3, \dots$, and η_j , $j = 1, 2, 3, \dots$ i.i.d. standard complex Gaussian random variables.

BOGOMOLNY-BOHIGAS-LEBOEUF '96, LEBOEUF '99, SODIN-TSIRELSON '04,'05, ZREBIEC '07

• Elliptic model (known as SU(2)-polynomial): on Riemann sphere $\mathbb{CP}^1 \simeq \mathbb{C} \cup \{\infty\}$

$$\mathbf{S}_{\mathbf{p}}^{\mathrm{ell}}(z) = \sum_{j=0}^{\mathbf{p}} \eta_j \sqrt{(\mathbf{p}+1) {\binom{\mathbf{p}}{j}}} z^j.$$

 $\, \bullet \,$ Flat model (Flat Gaussian Analytic Function, flat GAF): on \mathbb{C}

$$m{s}_{p}^{\mathrm{flat}}(z) = \sum_{j=0}^{\infty} \eta_{j} \sqrt{\frac{p^{j+1}}{j!}} z^{j}.$$

• Hyperbolic model: on unit disc $\mathbb{D} = \{|z| < 1\} \subset \mathbb{C}$

$$\boldsymbol{S}^{\mathrm{hyp}}_{\boldsymbol{\rho}}(\boldsymbol{z}) = \sum_{j=0}^{\infty} \eta_j \sqrt{(\boldsymbol{\rho}-1) \binom{\boldsymbol{\rho}+j-1}{j}} \boldsymbol{z}^j.$$

- Zeros set $Z(S_{\rho}^{\bullet})$ of S_{ρ}^{\bullet} are isolated points in the space $X_{\bullet} = \mathbb{CP}^{1}, \mathbb{C}, \mathbb{D}$.
- View $Z(\mathbf{S}_{p}^{\bullet})$ as a measure on X_{\bullet} , for test function $h: \langle [Z(\mathbf{S}_{p}^{\bullet})], h \rangle = \sum_{\mathbf{S}_{p}^{\bullet}(z)=0} h(z)$.

THREE BASIC EXAMPLES IN DIMENSION ONE, II

Models	X	$\omega = c_1(L,h)$	L	$h = e^{-\phi}$
Elliptic	$\mathbb{CP}^1\simeq\mathbb{C}\cup\{\infty\}$	$\omega_{ m FS}=rac{\sqrt{-1}}{2\pi}rac{dz\wedge dar z}{(1+ z ^2)^2}$	∅(1)	h _{FS}
Flat*	\mathbb{C}	$\omega_{ ext{flat}} = rac{\sqrt{-1}}{2\pi} dz \wedge dar{z}$	trivial $\underline{\mathbb{C}}$	$ 1 _{h}^{2} = e^{- z ^{2}}$
Hyperbolic	$\mathbb{D} = \{ z < 1\}$	$\omega_{\text{Poinc}} = rac{\sqrt{-1}}{2\pi} rac{dz \wedge dar{z}}{(1- z ^2)^2}$	trivial $\underline{\mathbb{C}}$	$ 1 _{h}^{2} = 1 - z ^{2}$

* also known as Bargmann-Fock model.

Models	ONB of $H^0_{(2)}(X, L^p)$	$d_p = \dim_{\mathbb{C}} H^0_{(2)}(X, L^{\otimes p})$	
Elliptic	$S_{j}^{p} = \sqrt{(p+1)\binom{p}{j}} z^{j}, j = 0, \dots, p$	$d_p = p + 1$	
Flat	$S_j^{p} = \sqrt{rac{p^{j+1}}{j!}} z^j, j \in \mathbb{N}$	$d_{ ho}=+\infty$	
Hyperbolic	$S_j^{oldsymbol{p}} = \sqrt{(oldsymbol{p}-1){p+j-1 \choose j}} z^j, j \in \mathbb{N}$	$d_{ ho}=+\infty$	

Gaussian holomorphic functions/sections in terms of orthonormal basis {S^p_i};

$$\boldsymbol{S}^{ullet}_{\boldsymbol{p}} = \sum_{j} \eta_{j} S^{\boldsymbol{p}}_{j}.$$

Random zeros as measures on X_•:

$$\frac{1}{p}\mathbb{E}[[Z(\boldsymbol{S}^{\bullet}_{\rho})]] = c_{1}(\boldsymbol{L},\boldsymbol{h}) = \text{ locally } \frac{\sqrt{-1}}{2\pi} \frac{\partial^{2}\phi}{\partial z_{i}\partial \bar{z}_{j}} dz_{i} \wedge d\bar{z}_{j}.$$

Large deviation estimates (concentration of measure) and central limit theorem also hold.

STANDARD GAUSSIAN HOLOMORPHIC SECTIONS

•
$$\{S_{j}^{p}\}_{j=1}^{d_{p}}$$
 ONB of $(H_{(2)}^{0}(X, L^{p}), \langle \cdot, \cdot \rangle_{\mathcal{L}^{2}}).$

• $\eta = {\{\eta_j\}}_{j=1}^{d_p}$ i.i.d. standard complex Gaussian random variables.

STANDARD GAUSSIAN HOLOMORPHIC SECTION

$$\mathbf{S}_{p}(x) := \sum_{j=1}^{d_{p}} \eta_{j} S_{j}^{p}(x).$$

- **(1)** If $d_p < \infty$, it is equivalent to equip $H^0_{(2)}(X, L^p)$ with Gaussian probability measure.
- ② When $d_p = \infty$... from random functions or random power series: Littlewood-Offord, Offord, Kahane, Edelman-Kostlan, Sodin-Tsirelson, etc.
- ③ Due to the ellipticity of $\bar\partial$ -operator, we have the locally uniform convergence of Bergman kernel function

$$B_{p}(x)=\sum_{j=1}^{\infty}|S_{j}^{p}(x)|_{h_{p}}^{2}<\infty.$$

- ④ S_p is almost surely a holomorphic section of L^p over X
- Iniqueness: distribution of S_p is independent of choices of ONB $\{S_i^p\}_j$.

ZEROS OF HOLOMORPHIC SECTIONS

- s_p holomorphic section of holomorphic line bundle L^p .
- ■ ... zeros set Z(s_p) is a complex submanifold of X with dimension (n − 1), locally think of

$\mathbb{C}^{n-1} \subset \mathbb{C}^n$.

• $\varphi \in \Omega_{\text{comp}}^{(n-1,n-1)}(X)$ a test form, we study $Z(s_p)$ via the functional

$$\langle [Z(s_p)], \varphi \rangle := \int_{Z(s_p)} \varphi|_{Z(s_p)} \in \mathbb{C}.$$

this functional $[Z(s_p)]$ is called (1, 1)-current on X.

Poincaré-Lelong formula, as (1, 1)-currents,

$$[Z(s_{
ho})] = rac{\sqrt{-1}}{2\pi} \partial \overline{\partial} \log |s_{
ho}|^2_{h_{
ho}} +
ho c_1(L,h).$$

• ... means that for $\varphi \in \Omega^{(n-1,n-1)}_{\text{comp}}(X)$,

$$egin{aligned} &\langle [Z(\pmb{s_p})], arphi
angle = rac{\sqrt{-1}}{2\pi} \int_X \log |\pmb{s_p}|^2_{h_p} \partial \overline{\partial} arphi + p \int_X \pmb{c_1}(L,h) \wedge arphi \ =: \langle rac{\sqrt{-1}}{2\pi} \partial \overline{\partial} \log |\pmb{s_p}|^2_{h_p}, arphi
angle + p \langle \pmb{c_1}(L,h), arphi
angle. \end{aligned}$$

EQUIDISTRIBUTION AND LARGE DEVIATION RESULTS FOR ZEROS OF S_p

- (X, ω) Kähler manifold with prequantum line bundle $(L, h) \dots$
- If *X* is non-compact, we need assumptions of *bounded geometry*:
 - $g^{TX}(\cdot, \cdot) = \omega(\cdot, J \cdot)$ is complete and $\sqrt{-1}R^{\det(T^{(1,0)}X)} > -C_0\omega$.

THEOREM 0 (DREWITZ-L.-MARINESCU, 2021, 2023)

Given a test form $\varphi \in \Omega^{(n-1,n-1)}_{\text{comp}}(X)$, almost surely, as $p \to \infty$

$$\frac{1}{p}\langle [Z(\boldsymbol{S}_{p})],\varphi\rangle \longrightarrow \langle c_{1}(L,h),\varphi\rangle := \int_{X} c_{1}(L,h) \wedge \varphi.$$

Weak convergence of (1, 1)-currents on X: $\frac{1}{p}\mathbb{E}[[Z(\mathbf{S}_{p})]] \longrightarrow c_{1}(L, h).$ Large Deviation Estimate (Concentration of measure):

$$\mathbb{P}\left(\left|\left(rac{1}{p}[Z(m{s}_{
ho})]-c_1(L,h),arphi
ight)
ight|>\delta
ight)\leq e^{-C_{arphi,\delta}\,p^{n+1}}.$$

Upper bound on hole probability: *U* relatively compact domain, and assuming ∂U to be negligible,

$$\mathbb{P}(\boldsymbol{S}_{\rho} \text{ has no zeros in } \boldsymbol{U}) \leq \boldsymbol{e}^{-C_U p^{n+1}}$$

ABOUT THE ZEROS OF RANDOM HOLOMORPHIC SECTIONS

- For compact X, these results were already known: Nonnenmacher-Voros (1998) on torus, Shiffman-Zelditch (1999), Shiffman-Zelditch-Zrebiec (2008) ...
 Dinh-Sibony (2006, convergence speed of random zeros) ...
- For non-compact X: Dinh-Marinescu-Schmidt (2012), Drewitz-L.-Marinescu (2021, 2023).
- Other extensions:
 - General probability measures (universality results): Bayraktar-Coman-Marinescu (2020), Drewitz-L.-Marinescu (2021) ...
 - Semi-positive line bundle on Riemann surfaces: Marinescu-Savale (2023, 2024), L.-Zielinski (2024) ...
 - General sequence of line bundles (L_p, h_p) instead of tensor powers: Coman-Ma-Marinescu (2017), Coman-Lu-Ma-Marinescu (2023) ... Bojnik-Günyüz (2024) ...

LARGE DEVIATION PRINCIPLE FOR HOLE PROBABILITY

Large Deviation Principle for hole probability:

$$\lim_{p\to+\infty}\frac{1}{p^{n+1}}\log\mathbb{P}(\boldsymbol{S}_{\rho} \text{ has no zeros in }\boldsymbol{U})$$

or let the domain grow to infinity or boundary of defining domain

$$\lim_{r \to +\infty \text{ or boundary value}} \frac{1}{r^{2n+2}} \log \mathbb{P}(\boldsymbol{S} \text{ has no zeros in } \boldsymbol{U}_r)$$

- Hyperbolic case with p = 1 or limiting Kac poly. on \mathbb{D} : Peres-Virág (Acta, 2005).
- $\bullet\,$ GAF on $\mathbb C$ and Gaussian power series: Nishry (2010, 2011) ... Ghosh-Zeitouni (2016) ...
- Compact Riemann surfaces: Zeitouni-Zelditch (2010), Zelditch (2013); Dinh-Ghosh-Hao Wu (2024), Hao Wu - Songyan Xie (2024),
- SU(n+1)-polynomial on \mathbb{CP}^n : Junyan Zhu (2014).
- General higher dimensional Kähler manifolds: still open.

QUESTION: RANDOMIZE THE QUANTUM STATES IN $H^0_{(2)}(X, L^p)$

- When d_p < ∞ (e.g., X is compact), Gaussian holomorphic section S_p is a good random quantum states in H⁰₍₂₎(X, L^p).
- However, if $d_p = \infty$...

• ... $\boldsymbol{S}_{p} := \sum_{j=1}^{\infty} \eta_{j} \boldsymbol{S}_{j}^{p}$ is almost never square-integrable on *X*, that is

$$\boldsymbol{S}_{\rho} \not\in H^{0}_{(2)}(X, L^{\rho}), \text{ a. s.}$$

• Why? $\mathbb{P}(\sum_{j=1}^{\infty} |\eta_j|^2 = \infty) = 1.$

• Is there a *good* way to randomize the quantum states in $H^0_{(2)}(X, L^p)$ in the framework of geometric quantization?

OUTLINE

I) INTRODUCTION: RANDOM ZEROS IN GEOMETRIC QUANTIZATION

- Geometric quantization via K\u00e4hler manifolds
- Questions on random zeros
- Limiting distribution of random zeros on K\u00e4hler manifolds

(2) TOEPLITZ OPERATORS AND GAUSSIAN \mathcal{L}^2 -holomorphic sections

- Berezin-Toeplitz quantization via K\u00e4hler manifolds
- Abstract Wiener space to define Gaussian \mathcal{L}^2 -holomorphic sections
- Main results for the random zeros on the support of f

3 DISCUSSIONS ON THE PROOFS AND BEYOND

- About the proofs of Theorem 1 and 2
- What happens outside the support of f?
- Zeros of partial Gaussian holomorphic sections

BEREZIN-TOEPLITZ QUANTIZATION, I

- Classical mechanics has a reformulation as Hamiltonian mechanics.
- ... closely related to geometry such as symplectic geometry and Poisson structures, in particular, Kähler manifold (X, ω) as a special case.
- ... dynamics of the system governed by the Hamiltonian flows associated to real functions on *X*, known as Hamiltonian.
- Values of a Hamiltonian are interpreted as the total energy of system, classical observable.
- To quantize the Hamiltonian mechanics is to associate each classical observable, the function *f*, with self-adjoint linear operators *T*_{*f*,ħ} ∈ End(*H*_ħ).
- $T_{f,\hbar}$ is the quantum observable... the spectrum of $T_{f,\hbar}$ is the quantization of the values of *f* at level \hbar .
- $\bullet\,$... a good quantization will be compatible with Poisson structure in semi-classical limit $\hbar \to 0.$
- In context of K\u00e4hler manifolds with prequantum line bundles, Berezin-Toeplitz quantization is a good one.

BEREZIN-TOEPLITZ QUANTIZATION, II

DEFINITION

Given (X, ω) Kähler manifold with prequantum line bundle (L, h). The Berezin-Toeplitz quantization is the linear map

$$\mathcal{L}^{\infty}(X,\mathbb{R})
i f\mapsto (\mathcal{T}_{f,
ho})_{
ho}\in \mathsf{\Pi}_{
ho}\mathrm{End}(H^{0}_{(2)}(X,L^{
ho})).$$

- Bergman projection $B_{\rho}: \mathcal{L}^{2}(X, L^{\rho}) \to H^{0}_{(2)}(X, L^{\rho}).$
- *T*_{*f*,*p*}: Toeplitz operator with symbol *f* and of level *p* ...

•
$$T_{f,\rho} := B_{\rho}M_{f}B_{\rho}$$
, that is, for $s_{\rho} \in H^{0}_{(2)}(X, L^{\rho})$,

$$T_{f,\rho}s_{\rho}:=B_{\rho}(fs_{\rho})\in H^0_{(2)}(X,L^{\rho}).$$

• $T_{f,p}(x, y)$ smooth integral kernel of $T_{f,p}$ such that

$$(T_{f,\rho}s_{\rho})(x) = \int_X T_{f,\rho}(x,y)s_{\rho}(y)\mathrm{d}\mathrm{V}(y).$$

Photo of Otto Toeplitz Source: archives of P. Roquette, Heidelberg.

TOEPLITZ KERNEL EXPANSIONS (FOLLOWING MA-MARINESCU 2007)

- (X, ω) Kähler manifold with prequantum line bundle $(L, h) \dots$
- Assume $g^{TX}(\cdot, \cdot) = \omega(\cdot, J \cdot)$ to be complete and $\sqrt{-1}R^{\det(T^{(1,0)}X)} > -C_0\omega$.
- Suppose that $f \in \mathcal{L}^{\infty}_{comp}(X, \mathbb{R})$, $\mathcal{T}_{f,p}$ is self-adjoint linear operator of trace class.
- For integer $k \ge 1$, set $T_{f,p}^k := \underbrace{T_{f,p} \circ \ldots \circ T_{f,p}}_{k}$ with \mathscr{C}^{∞} integral kernel $T_{f,p}^k(x, y)$.

k times

TOEPLITZ KERNEL EXPANSION

Then as $p \to +\infty$, that is, taking semi-classical limit,

(1) When *f* is smooth on open subset $U \subset X$, locally uniformly on *U*, we have

$$T_{f,p}^{k}(x,x) = f(x)^{k} p^{n} + \mathcal{O}(p^{n-1}).$$

2) If f vanishes at x with order ∞ ,

$$T^k_{f,p}(x,x)=\mathcal{O}(p^{-\infty}).$$

3 Then we conclude: $T_{f,p}$'s spectrum quantizes the values of f

spectral distribution of $T_{f,p}$

value distribution of f

PROBABILISTIC BEREZIN-TOEPLITZ QUANTIZATION

f ∈ L[∞]_{comp}(*X*, ℝ), a probabilistic model for Berezin-Toeplitz quantization consists of the random sections

$$\mathbf{S}_{f,p} := T_{f,p} \mathbf{S}_{p}$$

- S_{ρ} is the standard Gaussian holomorphic section ...
- If $d_p < \infty$, e.g., when X is compact, then $S_{f,p}$ is a well-defined square-integrable Gaussian holomorphic section on X (also by Ancona-Le Floch, 2022).
- However, if $d_p = \infty$ (when X is non-compact), $T_{f,p}$ does NOT act on S_p by definition.
- ... since S_p is almost never square-integrable on X.
- Abstract Wiener space by L. Gross (1965) to make a rigorous definition.

Gaussian \mathcal{L}^2 -holomorphic sections: Abstract Wiener Space

- For simplicity's sake, f ∈ L[∞]_{comp}(X, ℝ), we assume f ≥ 0 is nontrivial and f is smooth on X except on a closed subset of null measure.
- Ex: $f = \mathbf{1}_B$, indicator function of a geodesic ball $B \subset X$.
- $T_{f,p}$ injective, positive, trace-class (hence Hilbert-Schmidt) operator on $H^0_{(2)}(X, L^p)$.
- Abstract Wiener space (L. Gross 1965):
 - $\mathcal{B}_f(X, L^p)$ =Hilbert space as completion of $H^0_{(2)}(X, L^p)$ under norm $||T_{f,p} \cdot ||_{\mathcal{L}^2}$;
 - there exists a unique Gaussian probability measure $\mathcal{P}_{f,p}$ on $\mathcal{B}_f(X, L^p)$ such that ...
 - ... it extends Gaussian measures of any finite dimensional subspaces of $H^0_{(2)}(X, L^p)$ w.r.t. \mathcal{L}^2 -metric.
- $T_{f,p}: \mathcal{B}_f(X, L^p) \to H^0_{(2)}(X, L^p)$ isometry of Hilbert spaces.
- ... we obtain a Gaussian probability measure $\mathbb{P}_{f,p}$ on $H^0_{(2)}(X, L^p)$.
- Gaussian L²-holomorphic sections: S_{f,p} ~ (H⁰₍₂₎(X, L^p), ℙ_{f,p}), which is the rigorous version for the action of T_{f,p} on S_p.

EQUIDISTRIBUTION AND LARGE DEVIATION ON THE SUPPORT

THEOREM 1 (DREWITZ-L.-MARINESCU, 2023, 2024)

If $U \subset \text{supp}(f)$, then we have the weak convergence of (1, 1)-currents as $p \to \infty$,

$$\frac{1}{p}\mathbb{E}[[Z(\boldsymbol{S}_{f,p})]|_{\boldsymbol{U}}] \to c_1(L,h)|_{\boldsymbol{U}}.$$

and almost surely,

$$\frac{1}{p}[Z(\boldsymbol{S}_{f,p})]|_{\boldsymbol{U}} \to c_1(L,h)|_{\boldsymbol{U}}.$$

THEOREM 2 (DREWITZ-L.-MARINESCU, 2024)

If $U \subset \text{supp}(f)$, then we have

Large Deviation Estimate: for a test form $\varphi \in \Omega_{comp}^{(n-1,n-1)}(U)$,

$$\mathbb{P}\left(\left|\left\langle\frac{1}{\rho}[Z(\boldsymbol{S}_{f,\rho})]-c_1(L,h),\varphi\right\rangle\right|>\delta\right)\leq e^{-C_{\varphi,\delta}\,\rho^{n+1}}.$$

Hole Probability: assuming in addition ∂U to be negligible,

 $\mathbb{P}(\mathbf{S}_{f,p} \text{ has no zeros in } \mathbf{U}) \leq e^{-C_U p^{n+1}}$

CENTRAL LIMIT THEOREM ON THE SUPPORT

THEOREM 3 (DREWITZ-L.-MARINESCU, 2024)

Fix $f \in \mathscr{C}^{\infty}_{c}(X, \mathbb{R}_{\geq 0})$ which is not identically zero, and let U be an open subset of X such that $\overline{U} \subset \{f \neq 0\}$. Let φ be a real (n - 1, n - 1)-form on X with \mathscr{C}^{3} -coefficients such that supp $\varphi \subset U$ and $\partial \overline{\partial} \varphi \neq 0$, set

$$Z_{f,p}(\varphi) := \langle [Z(\mathbf{S}_{f,p})], \varphi \rangle,$$

then the distribution of the real random variable

$$p^{n/2}\langle [Z(\boldsymbol{S}_{f,p})] - pc_1(L,h_L), \varphi \rangle$$

converges weakly to $\mathcal{N}_{\mathbb{R}}(\mathbf{0}, \sigma(\varphi))$ as $p \to +\infty$.

• $\sigma(\varphi) := \frac{\zeta(n+2)}{4\pi^2} \int_U |L(\varphi)(x)|^2 dV(x)$, where ... • $\zeta(n+2) = \sum_{k=1}^{\infty} \frac{1}{k^{n+2}}$, and $L(\varphi)$ is a function on X given by $\sqrt{-1}\partial\overline{\partial}\varphi = L(\varphi) \frac{c_1(L,h_L)^n}{n!}.$

• ... this extends a result of Shiffman-Zelditch (2010) for compact Kähler manifolds, the essential step is given in a seminal work of Sodin-Tsirelson (2004).

BINGXIAO LIU (UZK)

OUTLINE

I) INTRODUCTION: RANDOM ZEROS IN GEOMETRIC QUANTIZATION

- Geometric quantization via K\u00e4hler manifolds
- Questions on random zeros
- Limiting distribution of random zeros on K\u00e4hler manifolds
- $_{2}$ Toeplitz operators and Gaussian \mathcal{L}^{2} -holomorphic sections
 - Berezin-Toeplitz quantization via K\u00e4hler manifolds
 - Abstract Wiener space to define Gaussian L²-holomorphic sections
 - Main results for the random zeros on the support of f

DISCUSSIONS ON THE PROOFS AND BEYOND

- About the proofs of Theorem 1 and 2
- What happens outside the support of f?
- Zeros of partial Gaussian holomorphic sections

Why on the support of function? An example $f = \mathbf{1}_U$

Let us consider the zeros of *classical* Gaussian random section S_{ρ} in the relative compact domain U:

- Take the indicator function : $\mathbf{1}_U(x) = \begin{cases} 1 & \text{if } x \in U; \\ 0 & \text{if else}. \end{cases}$
- It is equivalent to study the zeros of the random section $\mathbf{1}_U \mathbf{S}_p$ in U ...
- $\mathbf{1}_U \mathbf{S}_p$ is \mathcal{L}^2 -integrable, but it is not globally holomorphic on \mathbb{CP}^1
- ... apply Bergman projection: consider new random \mathcal{L}^2 -holomorphic section $B_p(\mathbf{1}_U \mathbf{S}_p)$ on X ...
- it is exactly our Gaussian \mathcal{L}^2 -holomorphic section $\mathbf{S}_{f,p}$ with $f = \mathbf{1}_U$.
- In semi-classical limit: zeros of $S_{f,p}$ in $\overline{U} \simeq$ zeros of S_p in $\overline{U} = \operatorname{supp} f$,
- ... which means: we expect everything for the zeros of S_p in U to hold in the same way for the zeros of S_{f,p} in U = supp f.

SKETCHED PROOF OF CONVERGENCE OF EXPECTATIONS

• ... bounded $f \ge 0$ is smooth on X except on a closed subset of null measure.

• To prove
$$\frac{1}{p}\mathbb{E}[[Z(\boldsymbol{S}_{f,p})]|_U] \rightarrow c_1(L,h)|_U \dots$$

- Poincaré-Lelong formula says $[Z(\mathbf{S}_{f,p})] = \frac{\sqrt{-1}}{2\pi} \partial \overline{\partial} \log |\mathbf{S}_{f,p}|^2_{h_p} + pc_1(L,h).$
- Then we get (also known as Edelman-Kostlan formula)

$$\frac{1}{p}\mathbb{E}[[Z(\boldsymbol{S}_{f,p})]|_{U}] - c_{1}(L,h)|_{U} = \frac{\sqrt{-1}}{2\pi p}\partial\overline{\partial}\log T_{f,p}^{2}(x,x).$$

• Recall $T_{f,p}^2(x,x) = f(x)^2 p^n + \mathcal{O}(p^{n-1})$, hence

$$\frac{\sqrt{-1}}{2\pi\rho}\partial\overline{\partial}\log T_{f,\rho}^2(x,x) = \mathcal{O}(\frac{\log p}{\rho}) \text{ as currents near nonvanishing point of } f.$$

- However, when $U \subset \text{supp}(f)$, f still can vanish inside U.
- We use the techniques from theory of pluri-subharmonic functions to conclude the convergence on whole *U*.

On the proofs of Theorems 1 and 2 $\,$

- The almost sure convergence of $\frac{1}{p}[Z(S_{t,p})]|_U$ to $c_1(L,h)|_U$ as well as the hole probability are the consequences of Large Deviation Estimate in Theorem 2.
- ... and Theorem 2 follows from the proposition below together with the Poincaré-Lelong formula.

PROPOSITION 1 (DREWITZ-L.-MARINESCU, 2024)

As in Theorem 2, $U \subset \text{supp}(f)$, define $\mathcal{M}_{\rho}^{U}(\boldsymbol{S}_{f,\rho}) = \sup_{x \in U} |\boldsymbol{S}_{f,\rho}(x)|_{h_{\rho}}$. Then for $\rho \in \mathbb{N}$,

$$\mathbb{P}\left(\left|\log \mathcal{M}^{U}_{
ho}(\boldsymbol{S}_{f,
ho})
ight| \geq \delta oldsymbol{
ho}
ight) \leq oldsymbol{e}^{-C_{U, \delta}
ho^{n+1}}$$

- ... near-diagonal expansions of $T_{f,p}^2(x, y)$: Ma-Marinescu (2007)
- For dist $(x, y) \lesssim \sqrt{\frac{\log \rho}{\rho}}$ and for $f(x) \neq 0, f(y) \neq 0$,

$$N_{f,\rho}(x,y) := \frac{|T_{f,\rho}^2(x,y)|_{h_{\rho,x}\otimes h_{\rho,y}^*}}{\sqrt{T_{f,\rho}^2(x,x)}} \sim (1+o(1))\exp\Big(-\frac{p\pi}{2}\operatorname{dist}(x,y)^2\Big).$$

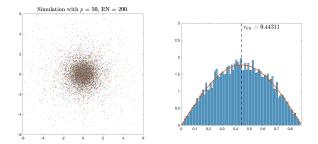
• Gaussian field $U \ni x \mapsto S_{f,p}(x) \in L_x^p$... correlation function $N_{f,p}(x, y)$.

WHAT HAPPENS OUTSIDE THE SUPPORT OF f?

Simulation of zeros of $\boldsymbol{S}_{\rho}^{\text{ell}}(z)$ on local chart $U_0 \cong \mathbb{C}$ of \mathbb{CP}^1 , note that $\boldsymbol{S}_{\rho}^{\text{ell}} = \boldsymbol{S}_{f,\rho}$ with $f \equiv 1$ on \mathbb{CP}^1 .

$$\mathbf{S}_{\boldsymbol{\rho}}^{\mathrm{ell}}(z) = \sum_{j=0}^{p} \eta_j \sqrt{(\boldsymbol{\rho}+1) {\binom{\boldsymbol{\rho}}{j}}} z^j.$$

RIGHT = density histogram w.r.t. Fubini-Study modulus of zeros.



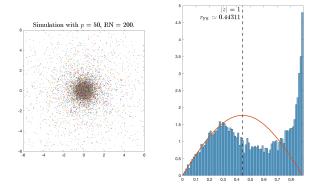
Red curve on right = radial density function $\psi(r_{FS}) = \sqrt{\pi} \sin(2\sqrt{\pi}r_{FS})$, representing the limiting distribution $\omega_{FS} = \frac{\sqrt{-1}dz \wedge d\bar{z}}{2\pi(1+|z|^2)^2}$.

WHAT HAPPENS OUTSIDE THE SUPPORT OF f?

Simulation of zeros of $S_{f,p}(z)$ on local chart $U_0 \cong \mathbb{C}$ of \mathbb{CP}^1 , where ...

 $f(z) = \mathbf{1}_{\mathbb{D}}$

is the indicator function of unit $\mathbb{D} \subset \mathbb{C}$, on Riemann sphere, \mathbb{D} represents the southern hemisphere. supp $(f) = \mathbb{D} = \{r_{FS} \leq \frac{\sqrt{\pi}}{4} \simeq 0.44311\ldots\}$



PARTIAL BERGMAN KERNELS: ZELDITCH-PENG ZHOU (2019)

- Still consider $(\mathbb{CP}^1, \mathcal{O}(p))$ and a local chart $U_0 \simeq \mathbb{C}$.
- Function $f := \mathbf{1}_{\mathbb{D}}$ on \mathbb{CP}^1 , note that $\operatorname{Vol}_{FS}(\mathbb{D}) = 1/2 \dots$
- Toeplitz spectra quantize values of *f*: For $p \gg 1$, half number of eigenvalues of $T_{f,p} \simeq 1$, and another half $\simeq 0$.

• Fix $a = 0.8 \le 1 = \max f$, let $H^0(\mathbb{CP}^1, \mathcal{O}(p))_{\ge 0.8}$ be subspace of $H^0(\mathbb{CP}^1, \mathcal{O}(p))$ spanned by the eigensections of $T_{f,p}$ associated with eigenvalues ≥ 0.8

- ... we have $d'_p := \dim H^0(\mathbb{CP}^1, \mathcal{O}(p))_{\geq 0.8} \simeq \frac{1}{2} \dim H^0(\mathbb{CP}^1, \mathcal{O}(p)) \simeq \frac{p}{2}$.
- Partial Bergman projection:

$$\textit{B}_{\rho,f,\geq 0.8}: \mathcal{L}^2(\mathbb{CP}^1,\mathcal{O}(\rho)) \rightarrow \textit{H}^0(\mathbb{CP}^1,\mathcal{O}(\rho))_{\geq 0.8},$$

• with partial Bergman kernel function $B_{p,f,\geq 0.8}(x) = \sum_{j=1}^{d'_p} |S_j^p(x)|^2_{h_p}$, where $\{S_j^p\}_{i=1}^{d'_p}$ is an ONB of $H^0(\mathbb{CP}^1, \mathcal{O}(p))_{\geq 0.8}$.

THEOREM (ZELDITCH-ZHOU, 2019, WITH PROPER ASSUMPTIONS FOR GENERAL f)

For the above example, as $p \to +\infty$, we have on $\mathbb{CP}^1 \setminus \partial \mathbb{D}$ (since $\mathbb{D} = \{f \ge 0.8\}$)

$$rac{B_{
ho,f,\geq \mathbf{0.8}}(x)}{B_{
ho}(x)} o \mathbf{1}_{\mathbb{D}}$$

ZEROS OF *partial* GAUSSIAN HOLOMORPHIC SECTION

• Define the partial Gaussian holomorphic section:

$$oldsymbol{S}_{oldsymbol{
ho},f,\geq0.8}:=\sum_{j=1}^{d_{oldsymbol{
ho}}^{\prime}}\eta_{j}S_{j}^{oldsymbol{
ho}},$$

where $\{S_j^{p}\}_{j=1}^{d'_{p}}$ is an ONB of $H^0(\mathbb{CP}^1, \mathcal{O}(p))_{\geq 0.8}$.

- Question: what is the asymptotic distribution of Z(S_{p,f,≥0.8}) on CP¹ as p → +∞?
- With certain assumptions: limiting distribution given by Zelditch-Zhou (2019).
- Roughly speaking: in our setting $S_{p,f,\geq 0.8}$ is a random polynomial of degree $d'_p \simeq \frac{1}{2}p$ as a section of $\mathcal{O}(p)$ on \mathbb{CP}^1 , that is

$$oldsymbol{S}_{arphi,t,\geq 0.8}\simeq\sum_{j=0}^{d_{
ho}^{\prime}\simeq p/2}\eta_{j}\sqrt{(
ho+1){p\choose j}}z^{j},$$

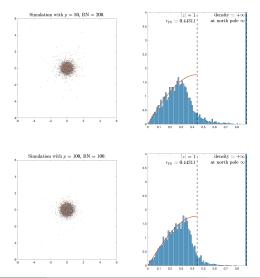
• ... as section of $\mathcal{O}(p)$, it vanishes at north pole ∞ with multiplicity $p - d'_p \simeq p/2$...

• ... half number of roots of $S_{p,f,\geq 0.8}$ are uniformly distributed in southern hemisphere of \mathbb{CP}^1 , that corresponding to $\mathbb{D} = \operatorname{supp} f$ in local chart $U_0 \simeq \mathbb{C}$, another half of roots concentrate at the north pole $\infty \in \mathbb{CP}^1$, the north pole is the farthest point from $\operatorname{supp} f$.

BINGXIAO LIU (UZK)

SIMULATION FOR ZEROS OF partial GAUSSIAN HOLOMORPHIC SECTION

Limiting distribution of zeros of $S_{p,f,\geq 0.8} \simeq \omega_{\text{FS}}|_{\mathbb{D}} + \frac{1}{2}\delta_{\infty}$.



Thank you.